Let f(x, y) = (x + y)e x 2−y 2 and R be the rectangle enclosed by the lines x − y = 0, x − y = 2, x + y = 0, and x + y = 3.

(a) Sketch the region R in the xy-plane.
(b) Make an appropriate change of variables to u and v. Sketch the region S resulting from the change of variables in the uv-plane.
(c) Evaluate RR R f(x, y) dA.

Respuesta :

Answer:

(1/4)*(e⁶ - 7)

Step-by-step explanation:

a) Given

x − y = 0  if  x = 0  ⇒  y = 0

x − y = 2  if  x = 0  ⇒  y = -2;  if  y = 0   ⇒  x = 2

x + y = 0  if  x = 0   ⇒  y = 0

x + y = 3  if  x = 0  ⇒  y = 3;  if  y = 0   ⇒  x = 3

then we show the region R in the pics 1 and 2.

b) We make the change of variables as follows

u = x + y

v= x - y

If

x - y = 0  ⇒ v = 0

x − y = 2  ⇒ v = 2

x + y = 0  ⇒ u = 0

x + y = 3  ⇒ u = 3

Where u is the horizontal axis and v is the vertical axis, the new region S is shown in the pic 3.

c) We evaluate ∫∫R (x + y)*e∧(x² - y²)dA

The procedure is shown in the pic 4, where we have to calculate the Jacobian in order to use it to get the answer.

Ver imagen jolis1796
Ver imagen jolis1796
Ver imagen jolis1796
Ver imagen jolis1796