Respuesta :

Answer:

4x / (2x^2+1)

Step-by-step explanation:

g(x)=ln(2x^2+1)

Using u substitution

u= 2x^2 +1

du = 4x  dx

g'(x) = d/du ( g(u) du)

We know that the derivative of ln(u) = 1/u  since this is always positive

        = 1/ u* du

 Substituting x back into the equation

g'(x) = 1/(2x^2+1) * 4x

       = 4x / (2x^2+1)