Respuesta :

Answer:

Part 1) [tex]MN=x\sqrt{2}\ units[/tex]

Part 2) [tex]LN=x\frac{\sqrt{2}}{2}(1+\sqrt{3})\ units[/tex]

Step-by-step explanation:

The picture of the question in the attached figure

step 1

Find the measure of ang;e M

Remember that the sum of the interior angles in any triangle must be equal to 180 degrees

so

[tex]M+L+N=180^o[/tex]

substitute the given values

[tex]M+45^o+30^o=180^o[/tex]

[tex]M=105^o[/tex]

step 2

Applying the law of sines find the length side MN

[tex]\frac{MN}{sin(45^o)}=\frac{x}{sin(30^o)}[/tex]

Remember that

[tex]sin(45^o)=\frac{\sqrt{2}}{2}[/tex]

[tex]sin(30^o)=\frac{1}{2}[/tex]

substitute

[tex]\frac{MN}{\frac{\sqrt{2}}{2}}=\frac{x}{\frac{1}{2}}[/tex]

[tex]MN=x\sqrt{2}\ units[/tex]

step 3

Find the length side LN

Construct the altitude from M to LN.

In the right triangle of the left

[tex]cos(45^o)=\frac{d_1}{x}[/tex] ---> by CAH (adjacent side divided by the hypotenuse)

Remember that

[tex]cos(45^o)=\frac{\sqrt{2}}{2}[/tex]

substitute

[tex]\frac{\sqrt{2}}{2}=\frac{d_1}{x}[/tex]

[tex]d_1=x\frac{\sqrt{2}}{2}\ units[/tex]

In the right triangle of the right

[tex]tan(30^o)=\frac{d_1}{d_2}[/tex] ---> by TOA (opposite side divided by adjacent side)

Remember that

[tex]tan(30^o)=\frac{\sqrt{3}}{3}[/tex]

[tex]d_1=x\frac{\sqrt{2}}{2}\ units[/tex]

substitute

[tex]\frac{\sqrt{3}}{3}=\frac{x\frac{\sqrt{2}}{2}}{d_2}[/tex]

[tex]d_2=\frac{3x\sqrt{2}}{2\sqrt{3}}\ units[/tex]

simplify

[tex]d_2=\frac{x\sqrt{6}}{2}\ units[/tex]

Find the length side LN

Remember that

[tex]LN=d_1+d_2[/tex]

substitute the values

[tex]LN=(x\frac{\sqrt{2}}{2}+\frac{x\sqrt{6}}{2})\ units[/tex]

simplify

[tex]LN=x\frac{\sqrt{2}}{2}(1+\sqrt{3})\ units[/tex]

Ver imagen calculista