Respuesta :

Answer:

The sum of the sequence is -152250.

Step-by-step explanation:

Given : Sequence [tex]-32+(-34)+(-36)+...+(-778)+(-780)[/tex]

To find : What is the sum of the sequence?

Solution :

The given sequence is in Arithmetic sequence as the difference between them is same.

Where, the first term is a=-32

The common difference is [tex]d=a_2-a_1[/tex]

[tex]d=(-34)-(-32)[/tex]

[tex]d=-34+32[/tex]

[tex]d=-2[/tex]

The last term is l=-780.

The last term formula is [tex]l=a+(n-1)d[/tex]

[tex]-780=-32+(n-1)(-2)[/tex]

[tex]\frac{-780+32}{-2}=n-1[/tex]

[tex]374=n-1[/tex]

[tex]n=375[/tex]

The sum of n terms formula is

[tex]S_n=\frac{n}{2}[a+l][/tex]

[tex]S_{375}=\frac{375}{2}[-32+(-780)][/tex]

[tex]S_{375}=\frac{375}{2}[-812][/tex]

[tex]S_{375}=375\times (-406)[/tex]

[tex]S_{375}=-152250[/tex]

Therefore, the sum of the sequence is -152250.