Answer:
Margin of error for a 95% of confidence intervals is 0.261
Step-by-step explanation:
Step1:-
Sample n = 81 business students over a one-week period.
Given the population standard deviation is 1.2 hours
Confidence level of significance = 0.95
Zₐ = 1.96
Margin of error (M.E) = [tex]\frac{Z_{\alpha }S.D }{\sqrt{n} }[/tex]
Given n=81 , σ =1.2 and Zₐ = 1.96
Step2:-
[tex]Margin of error (M.E) = \frac{Z_{\alpha }S.D }{\sqrt{n} }[/tex]
[tex]Margin of error (M.E) = \frac{1.96(1.2) }{\sqrt{81} }[/tex]
On calculating , we get
Margin of error = 0.261
Conclusion:-
Margin of error for a 95% of confidence intervals is 0.261