If VW is 10 cm, find the length of VR⌢. Round to the nearest hundredth (two decimal places).
find the length of VR=

Given:
Given that the length of VW is 10 cm.
The central angle is 127°
We need to determine the arc length of VR.
Arc length of VR:
The arc length of VR can be determined using the formula,
[tex]Arc \ length = \frac{\theta}{360}\times 2 \pi r[/tex]
Substituting [tex]\theta=127[/tex] and r = 10, we get;
[tex]Arc \ length = \frac{127}{360}\times 2 (3.14)(10)[/tex]
Simplifying the terms, we get;
[tex]Arc \ length = \frac{7975.6}{360}[/tex]
[tex]Arc \ length = 22.154[/tex]
Rounding off to the nearest hundredth, we get;
[tex]Arc \ length = 22.15[/tex]
Thus, the arc length of VR is 22.15 cm