Find the fourth roots of 256(cos 240° + i sin 240°).


(will give Brainliest answer/5 stars if correct answer within 30 min. of posting)

Respuesta :

Answer with Step-by-step explanation:

We are given that

We have to find the fourth roots of given complex number.

[tex](256)^{\frac{1}{4}}=(4^4)^{\frac{1}{4}}=4^^{\frac{1}{4}\times 4}=4[/tex]

By using the formula

[tex](a^b)^x=a^{bx}[/tex]

[tex]\theta=240^{\circ}[/tex]

[tex]\theta=\frac{240}{4}=60^{\circ}[/tex]

Angle of rotation=[tex]\frac{360}{4}=90^{\circ}[/tex]

Therefore, the four roots of given complex number are

[tex]4(cos 60^{\circ}+i sin60^{\circ})[/tex]

[tex]4(cos150^{\circ}+i sin150^{\circ})[/tex]

[tex]4(cos240^{\circ}+isin 240^{\circ})[/tex]

[tex]4(cos330^{\circ}+i sin330^{\circ})[/tex]