At some instant and location, the electric field associated with an electromagnetic wave in vacuum has the strength 69.5 V/m. Find the magnetic field strength B, the total energy density u, and the power flow per unit area, all at the same instant and location.

Magnetic Field=__________ T -Energy density=__________ J/m^3 -Power flow per unit are=________ W/m^2

Respuesta :

Answer:

A) 2.19*10^{-7} T

B) 4.27*10^{-8} J/m^3

C) 12.82 W/m^2

Explanation:

The relation between magnetic and electric field is given by:

[tex]c=\frac{E}{B}[/tex]

A) Hence, the magnitude of the magnetic field is:

[tex]B=\frac{E}{c}=\frac{65.9\frac{V}{m}}{3*10^{8}\frac{m}{s}}=2.19*10^{-7}T[/tex]

B) the energy density is:

[tex]u_E=\frac{1}{2}\epsilon_0 E^2=\frac{1}{2}(8.85*10^{-12}\frac{C^2}{Nm^2})(69.5\frac{V}{m})^2=4.27*10^{-8}\frac{J}{m^3}[/tex]

C) the flow per unit area can be computed with the magnitude of the Poynting vector:

[tex]S=c\epsilon_0|E|^2=(3*10^8\frac{m}{s})(8.85*10^{-12}\frac{C^2}{Nm^2})|69.5\frac{V}{m}|^2=12.82\frac{W}{m^2}[/tex]

hope this helps!!