Respuesta :

Answer:

C and E

Step-by-step explanation:

We are given that

[tex]x_1=0.2,y_1=0.3[/tex]

[tex]\frac{y}{x}=\frac{0.3}{0.2}=\frac{3}{2}[/tex]

[tex]k=\frac{y}{x}=\frac{3}{2}[/tex]

A.[tex]x_2=1.2,y_2=2.3[/tex]

[tex]\frac{y_2}{x_2}=\frac{2.3}{1.2}=\frac{23}{12}\neq=\frac{3}{2}[/tex]

Hence, it is not in proportional relationship with (0.2,0.3)

B.(2.7,4.3)

[tex]x_3=2.7,y_3=4.3[/tex]

[tex]\frac{y_3}{x_3}=\frac{4.3}{2.7}=\frac{43}{27}\neq\frac{3}{2}[/tex]

Hence, it is not in proportional relationship with (0.2,0.3).

C.(3.2,4.8)

[tex]x_4=3.2,y_4=4.8[/tex]

[tex]\frac{y_4}{x_4}=\frac{4.8}{3.2}=\frac{3}{2}[/tex]

Hence, the ordered pair (3.2,4.8) are in a proportional relationship with (0.2,0.3).

D.(3.5,5.3)

[tex]\frac{y_5}{x_5}=\frac{5.3}{3.5}=\frac{53}{35}\neq \frac{3}{2}[/tex]

Hence, the ordered pair (3.5,5.3) are not in a proportional relationship with (0.2,0.3).

E.(5.2,7.8)

[tex]\frac{y_6}{x_6}=\frac{7.8}{5.2}=\frac{3}{2}[/tex]

Hence, the ordered pair (5.2,7.8) are in a proportional relationship with (0.2,0.3).