Respuesta :

Answer:

Required rule for [tex]n^{th}[/tex] is [tex]a_{n}=7n-27[/tex].

Step-by-step explanation:

Given that,

[tex]a_{11} = 50,\ \ d=7[/tex]

From the question: we have to write the [tex]n^{th}[/tex] term of Arithmetic sequence.

Arithmetic Sequence or Arithmetic progression (A.P) : It is a sequence which possess that difference between of two successive sequence is always constant.

                [tex]a_{1} ,a_{2},a_{3},a_{4}.....................a_{n-1},a_{n}[/tex]

                                        where, [tex]a_{1}[/tex] is the first term of A.P

                                                     [tex]d[/tex] is the common difference.

                                                     [tex]a_{n}[/tex] is the last term or general term.

The above sequence to be in A.P then their common difference should be equal.

          [tex]d=a_{2}-a_{1} =a_{3}-a_{2}=a_{4} -a_{3} ..........................a_{n}-a_{n-1}[/tex]

Now, Formula of General Term is [tex]a_{n}=a+(n-1)d[/tex]

So,                                                    [tex]a_{11}= a+(11-1)d\\ a_{11} = a+10d[/tex]

 Substituting the value of   [tex]a_{11} = 50,\ \ d=7[/tex] we get,

                                                         [tex]50=a+10\times7\\50=a+70\\a=-20[/tex]

Then General term ([tex]a_{n}[/tex]) of given data is

                                                         [tex]a_{n}=-20+(n-1)7\\a_{n}=-20+7n-7\\a_{n}=7n-27[/tex]

Therefore, Required rule for [tex]n^{th}[/tex] is [tex]a_{n}=7n-27[/tex].