Answer: 4.86
Explanation:
sphere moment of Inertia Iₑ = (2/5)mrₑ²
Let the sphere of radius 1.59 cm be x
Let the spherical shell of radius 7.72 cm be y, so that
Iₑ(x) = 2/5 * m * 1.59²
Iₑ(x) = 2/5 * m * 2.5281
Iₑ(x) = 1.011m
Iₑ(y) = 2/5 * m * 7.72²
Iₑ(y) = 2/5 * m * 59.5984
Iₑ(y) = 23.84m
Also, the angular speed of the sphere's would be ωₑ(x) and ωₑ(y)
total k.e = rotational k.e + linear k.e
for sphere = ½Iₑωₑ² + ½mωₑ²rₑ²
For sphere x
{ωₑ²[ 1.011 + 1.59²]} =
ωₑ²(1.011 + 2.5281) =
ωₑ²(3.5391)
For sphere y
{ωₑ²[ 23.84 + 7.72²]} =
ωₑ²(23.84 + 59.5984) =
ωₑ²(83.4384)
If the ratio of x/y = 1, then
ωₑ(x)²(3.5391) / ωₑ(y)²(83.4384) = 1
ωₑ(x)²(3.5391) = ωₑ(y)²(83.4384)
[ωₔ(x)/ωₑ(y)]² = [83.4384] / [3.5391] ~= 23.5762
[ωₔ(x)/ωₑ(y)] = √(23.5762)
[ωₔ(x)/ωₑ(y)] = 4.86