Answer:
a.
[tex]\frac{1}{2} \frac{dC_{CO_2}}{dt} =-\frac{1}{3} \frac{dC_{CO}}{dt}[/tex]
b.
[tex]\frac{dC_{COS}}{dt}=- \frac{dC_{SO_2}}{dt}[/tex]
c.
[tex]-\frac{1}{3} \frac{dC_{CO}}{dt}=\frac{dC_{SO_2}}{dt}[/tex]
Explanation:
Hello,
In this case, the undergoing chemical reaction is:
[tex]SO_2 (g) + 3CO(g) \rightarrow 2CO_2 + COS(g)[/tex]
For which rates of consumption are related as follows, taking into account the change in the concentration with respect to the time and each species stoichiometric coefficient:
[tex]-\frac{1}{3} \frac{dC_{CO}}{dt}=- \frac{dC_{SO_2}}{dt}=\frac{1}{2} \frac{dC_{CO_2}}{dt} =\frac{dC_{COS}}{dt}[/tex]
For the given requirements, each rate of formation turns out as shown below:
a.
[tex]\frac{1}{2} \frac{dC_{CO_2}}{dt} =-\frac{1}{3} \frac{dC_{CO}}{dt}[/tex]
b.
[tex]\frac{dC_{COS}}{dt}=- \frac{dC_{SO_2}}{dt}[/tex]
c.
[tex]-\frac{1}{3} \frac{dC_{CO}}{dt}=\frac{dC_{SO_2}}{dt}[/tex]
Best regards.