Answer:
a) 0.9995c
b) 5641MeV
c) 91670 MeV
Explanation:
(a) The speed of approach is given by the formula:
[tex]u=\frac{v_1+v_2}{1+\frac{v_1v_2}{c}}=\frac{2(0.9898c)}{1+\frac{(0.9898)^2c^2}{c^2}}=0.99995c[/tex]
(b) the kinetic energy is given by:
[tex]E_k=m_0c^2[\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1][/tex]
by replacing c=3*10^8m/s, m_0=1.67*10^{-27}kg we obtain:
[tex]E_k=5641MeV[/tex]
(c) in the rest frame of the other proton we have:
[tex]E_k=m_0c^2[\frac{1}{\sqrt{1-\frac{u^2}{c^2}}}-1][/tex]
by replacing we get
[tex]E_k=91670MeV[/tex]
hope this helps!!