Respuesta :
Answer:
For a resistance (R) of 1000 MΩ and capacitance (C) of 2.179x10⁻³μF
Explanation:
The charge on the discharging capacitor is equal:
[tex]Q=Q_{o} e^{-\frac{t}{RC} }[/tex]
If t = 1 s, then:
[tex]Q=Q_{o} (1-\frac{1}{e} )[/tex]
Matching both equations:
[tex]Q_{o} e^{-\frac{t}{RC} } =Q_{o}( 1-\frac{1}{e})\\e^{-\frac{t}{RC} } =1-\frac{1}{e}[/tex]
If t = 1
[tex]e^{-\frac{1}{RC} } = 1-\frac{1}{e}\\e^{-\frac{1}{RC} } =0.632\\-\frac{1}{RC} =ln0.632\\-\frac{1}{RC}=-0.459\\RC=\frac{1}{0.459} =2.179ohmF[/tex]
The capacitance for a resistor of resistance of 1000 MΩ is equal:
[tex]C=\frac{2.179}{R} =\frac{2.179}{1000x10^{6} } =2.179x10^{-9} =2.179x10^{-3} \mu F[/tex]
Answer:
The capacitance for a resistor of resistance of 1000 MΩ is equal:
Explanation: