Answer:
The 95% confidence interval has a higher critical value, so it is wider.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error of the interval is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
80% confidence level
So [tex]\alpha = 0.2[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.2}{2} = 0.9[/tex], so [tex]Z = 1.28[/tex].
The 95% confidence interval has a higher critical value, so it is wider.