Respuesta :
Answer:
[tex]A=14s+s^2[/tex]
[tex]A=41.25\ in^2[/tex]
Step-by-step explanation:
-Let s be the base lengths and h be the slant heights of the trinagles.
-Surface area of the pyramid is the sum of the areas of all of it's face and can be given as:
[tex]Area=Area \ of \ Triangles +Base \ Area\\\\=4(\frac{1}{2}sh)+s^2\\\\=2sh+s^2\\\\=s(2h+s)[/tex]
[tex]h=7\\\\\therefore A=s(2h+s)\\\\=s(2\times 7+s)\\\\=s(14+s)\\\\=14s+s^2[/tex]
#We substitute the length and height dimensions in our simplified formula to calculate the Surface area as:
[tex]A=s(2h+s)\\\\=2.5(2\times 7+2.5)\\\\=41.25\ in^2[/tex]
Hence, the pyramid's surface area is [tex]41.25\ in^2[/tex]