In ΔXYZ, side y = 5 cm, side z = 6 cm, and X = 40°. Find the area of ΔXYZ.

A) 7.5 cm2

B) 9.6 cm2

C) 15.0 cm2

D) 19.3 cm2

Respuesta :

Answer:

The Required area of Δ [tex]XYZ[/tex] is [tex]9.6 \ cm^{2}[/tex].

Step-by-step explanation:

Diagram of given scenario is shown below.

Given that,

[tex]XY=5\ cm[/tex], [tex]XZ=6\ cm[/tex] and [tex]\angle X=40[/tex]°

To find : The area of Δ [tex]XYZ[/tex].

So, from the question

Area of triangle when two sides and one angle (between two known sides) are given  [tex](Area) = \frac{product \ of \ known\ side \times Sin\angle m}{2}[/tex] , where [tex]\angle m[/tex] is the given angle.

Substituting the given values in above to find area of Δ [tex]XYZ[/tex] we get,

                [tex]Ar(\triangle XYZ) = \frac{5\times6\times Sin\angle40}{2}[/tex]

                                    [tex]= 15\times0.642788[/tex]

                                    [tex]= 9.6 \ cm^{2}[/tex]

Therefore, The Required area of Δ [tex]XYZ[/tex] is [tex]9.6 \ cm^{2}[/tex].

Ver imagen sihanmintu