A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment.

n=10, p=0.5, x=4

p(4)

​(Do not round until the final answer. Then round to four decimal places as​ needed.)

Respuesta :

Answer:

P(4) =p(x=4) = 0.205078

Step-by-step explanation:

Explanation:-

The probability of x successes in the n independent trials of the experiment.

Given n=10, p=0.5,

By using Binomial distribution

[tex]P(X =x) = n_{C_{x} } p^{x} q^{n-x}[/tex]

Given the p = 0.5

               q=1-p =1-0.5=0.5

[tex]P(X =4) = 10_{C_{4} } (0.5)^{4} (0.5)^{10-4}[/tex]

we will use formula

[tex]n_{C_{r} } = \frac{n!}{(n-r)!r!}[/tex]

[tex]10_{C_{4} } = \frac{10!}{(10-4)!4!}=\frac{10X9X8X7X6!}{6!4!} =\frac{10X9X8X7}{4X3X2X1} =210[/tex]

[tex]P(X =4) = 210 (0.5)^{4} (0.5)^{10-4}[/tex]

[tex]P(X =4) = 210 (0.5)^{4} (0.5)^{6}[/tex]

on calculation, we get

P(X=4) = 0.205078