Answer:
[tex]T = 70 +230 (\frac{18}{23})^{\frac{t}{3}}[/tex]
Explanation:
We use T to represent the temperature of the cake at time "t"
Also [tex]T_k[/tex] to be the kitchen temperature :
By differentiation:
[tex]\frac{dT}{dt}=-k (T-T_k)\\ \\\frac{dT}{dt}=-k (T-70)\\\\[/tex]
where;
T(0) = 300° F
T(3) = 250° F
[tex]T = 70 + Ce^{-kt}[/tex]
[tex]300 = 70 + Ce^0\\\\300-70 = C*1\\\\C = 230\\\\T = 70 + 230 e^{-kt}[/tex]
T(3) = 250
[tex]250 = 70 + 230 e^{-3k}[/tex]
[tex]250 - 70 = 230 e^{-3k}\\\\180 = 230 e^{-3k}\\\\\frac{180}{230}= e^{-3k}\\\\\frac{18}{23}= e^{-3k}\\\\-k = \frac{1}{3}In(\frac{18}{23})\\\\T = 70 + 230 e^{\frac{t}{3}In \frac{18}{23}}\\\\T = 70 +230 (\frac{18}{23})^{\frac{t}{3}}[/tex]