Answer:
[tex]\frac{I_{2}}{I_{1}} = 0.04[/tex]
Explanation:
The intensity of a star noticed at a certain distance is inversely proportional to the square of distance. Then:
[tex]I_{1}\cdot r_{1}^{2} = I_{2}\cdot r_{2}^{2}[/tex]
The intensity of the Sun in Jupiter relative to Earth is:
[tex]\frac{I_{2}}{I_{1}} = \frac{r_{1}^{2}}{r_{2}^{2}}[/tex]
[tex]\frac{I_{2}}{I_{1}} = \left(\frac{1\,AU}{5.2\,AU} \right) ^{2}[/tex]
[tex]\frac{I_{2}}{I_{1}} = 0.04[/tex]