You have a stopped pipe of adjustable length close to a taut 85.0cm, 7.25g wire under a tension of 4170N. You want to adjust the length of the pipe so that, when it produces sound at its fundamental frequency , this sound causes the wire to vibrate in its second overtone (third harmonic). With a very large amplitude. How long should the pipe be?

Respuesta :

Answer:

The length is [tex]L_d= 0.069 \ m[/tex]

Explanation:

From the question we are told that

               The length of the wire  [tex]L = 85cm = \frac{85}{100} = 0.85m[/tex]

                The mass is  [tex]m = 7.25g = \frac{7.25}{1000} = 7.25^10^{-3}kg[/tex]

                The tension is  [tex]T = 4170N[/tex]

Generally the frequency of  oscillation of a stretched wire is mathematically represented as

             [tex]f = \frac{n}{2L} \sqrt{\frac{T}{\mu}[/tex]

Where n is the the number of nodes = 3 (i.e the third harmonic)

             [tex]\mu[/tex] is the linear mass density of the wire

 This linear mass density is mathematically represented as

               [tex]\mu = \frac{m}{L}[/tex]

Substituting values

            [tex]\mu = \frac{7.2*10^{-3}}{0.85}[/tex]

                [tex]= 8.53 *10^{-3} kg/m[/tex]

 Substituting values in to the equation for frequency

            [tex]f = \frac{3}{2 80.85} * \sqrt{\frac{4170}{8.53*10^{-3}} }[/tex]

               [tex]= 1234Hz[/tex]

From the question the we can deduce that the fundamental frequency is equal to the oscillation of a stretched wire

The fundamental frequency is mathematically represented as

        [tex]f = \frac{v}{4L_d}[/tex]

Where [tex]L_d[/tex] is the  length of the pipe

          v is the speed of sound with a value of [tex]v = 343m/s[/tex]

    Making  [tex]L_d[/tex] the subject of the formula

                      [tex]L_d = \frac{v}{4f}[/tex]

   Substituting values

                   [tex]L_d = \frac{343}{(4)(1234)}[/tex]

                        [tex]L_d= 0.069 \ m[/tex]

From the question the we can deduce that the fundamental frequency is equal to the oscillation of a stretched wire