Answer: 50.91 grams
Explanation:
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} B_2H_6=\frac{14.67g}{27.67g/mol}=0.5302moles[/tex]
The balanced chemical equation is :
[tex]B_2H_6(g)+3O_2(g)\rightarrow B_2O_3(s)+3H_2O(l)[/tex]
According to stoichiometry :
1 mole of [tex]B_2H_6[/tex] require = 3 moles of [tex]O_2[/tex]
Thus 0.5302 moles of [tex]B_2H_6[/tex] will require =[tex]\frac{3}{1}\times 0.5302=1.591moles[/tex] of [tex]O_2[/tex]
Mass of [tex]O_2=moles\times {\text {Molar mass}}=1.591moles\times 32.00g/mol=50.91g[/tex]
Thus 50.91 grams of [tex]O_2[/tex] reacts with 14.67 g of diborane