If 36.9 mL of B2H6 reacted with excess oxygen gas, determine the actual yield of B2O3 if the percent yield of B2O3 was 75.7%. (The density of B2H6 is 1.131 g/mL. The molar mass of B2H6 is 27.668 g/mol and the molar mass of B2O3 is 69.62 g/mol.)

Respuesta :

Answer: The actual yield of [tex]B_2O_3[/tex] is 60.0 g

Explanation:-

The balanced chemical reaction :

[tex]B_2H_6(l)+3O_2(g)\rightarrow B_2O_3(s)+3H_2O(l)[/tex]

Mass of [tex]B_2H_6[/tex] =[tex]Density\times Volume=1.131g/ml\times 36.9ml=41.7g[/tex]

[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]    

[tex]\text{Moles of} B_2H_6=\frac{41.7g}{27.668g/mol}=1.51moles[/tex]

According to stoichiometry:

1 mole of [tex]B_2H_6[/tex] gives = 1 mole of [tex]B_2O_3[/tex]

1.51 moles of [tex]B_2H_6[/tex] gives =[tex]\frac{1}{1}\times 1.51=1.51[/tex] moles of [tex]B_2O_3[/tex]

Theoretical yield of [tex]B_2O_3=moles\times {Molar mass}}=1.14mol\times 69.62g/mol=79.3g[/tex]

Percent yield of [tex]B_2O_3[/tex]= [tex]75.7\%[/tex]

[tex]\%\text{ yield}=\frac{\text{Actual yield}}{\text{Theoretical yield}}\times 100[/tex]

[tex]75.7\%=\frac{\text{Actual yield}}{79.3}\times 100[/tex]

[tex]{\text{Actual yield}}=60.0g[/tex]

Thus the actual yield of [tex]B_2O_3[/tex] is 60.0 g