The heat capacity of a bomb calorimeter was determined by burning 6.91 g of methane (energy of combustion = −803 kJ/mol CH4) in the bomb. The temperature changed by 11.1°C. (a) What is the heat capacity of the bomb? kJ/°C (b) A 14.0-g sample of acetaldehyde (CH3CHO) produced a temperature increase of 11.3°C in the same calorimeter. What is the energy of combustion of acetaldehyde (in kJ/mol)?

Respuesta :

Answer :

(a) The heat capacity of calorimeter [tex]31.25kJ/^oC[/tex]

(b) The energy of combustion of acetaldehyde is, 1109.8 kJ/mol

Explanation :

First we have to calculate the heat produced.

[tex]\Delta H=\frac{q}{n}[/tex]

where,

[tex]\Delta H[/tex] = enthalpy change = -803 kJ/mol

q = heat released = ?

m = mass of [tex]CH_4[/tex] = 6.91 g

Molar mass of [tex]CH_4[/tex] = 16 g/mol

[tex]\text{Moles of }CH_4=\frac{\text{Mass of }CH_4}{\text{Molar mass of }CH_4}=\frac{6.91g}{16g/mole}=0.432mole[/tex]

Now put all the given values in the above formula, we get:

[tex]-803kJ/mol=\frac{q}{0.432mole}[/tex]

[tex]q=-346.896kJ[/tex]

(a) Now we have to calculate the heat capacity of calorimeter.

[tex]q=c\times (\Delta T)[/tex]

where,

q = heat produced = 346.896 kJ = 346896 J

c = heat capacity of calorimeter = ?

[tex]\Delta T[/tex] = change in temperature = [tex]11.1^oC[/tex]

Now put all the given values in the above formula, we get:

[tex]346896J=c\times (11.1^oC)[/tex]

[tex]c=31251.8J^oC=31.25kJ/^oC[/tex]

(b) Now we have to calculate the moles of acetaldehyde.

Mass of [tex]CH_3CHO[/tex] = 14.0 g

Molar mass of [tex]CH_3CHO[/tex] = 44 g/mol

[tex]\text{Moles of }CH_3CHO=\frac{\text{Mass of }CH_3CHO}{\text{Molar mass of }CH_3CHO}=\frac{14.0g}{44g/mole}=0.3182mole[/tex]

Now we have to calculate the heat produced in combustion.

[tex]q=c\times (\Delta T)[/tex]

where,

q = heat produced = ?

c = heat capacity of calorimeter = [tex]31.25kJ/^oC[/tex]

[tex]\Delta T[/tex] = change in temperature = [tex]11.3^oC[/tex]

Now put all the given values in the above formula, we get:

[tex]q=31.25kJ/^oC\times (11.3^oC)[/tex]

[tex]q=353.125kJ[/tex]

Now we have to calculate the energy of combustion of acetaldehyde.

[tex]\Delta H=\frac{q}{n}[/tex]

where,

[tex]\Delta H[/tex] = enthalpy change = ?

q = heat released = 353.125 kJ

n = moles of [tex]CH_3CHO[/tex] = 0.3182mole

Now put all the given values in the above formula, we get:

[tex]\Delta H=\frac{353.125 kJ}{0.3182mole}[/tex]

[tex]\Delta H=1109.8kJ/mol[/tex]