Answer:
[tex]\dot n_{f} = 85.177\,rpm[/tex]
Explanation:
The expression for the moment of inertia of the person is:
Arms outstretched
[tex]I = \frac{1}{12}\cdot (0.13)\cdot (61\,kg)\cdot (1.40\,m)^{2} + \frac{1}{2}\cdot (0.87)\cdot (61\,kg)\cdot (0.35\,m)^{2}[/tex]
[tex]I = 4.546\,kg\cdot m^{2}[/tex]
Arms parallel to the trunk
[tex]I = \frac{1}{2}\cdot (61\,kg)\cdot (0.35\,m)^{2}[/tex]
[tex]I = 3.736\,kg\cdot m^{2}[/tex]
The final angular speed is found by means of the Principle of Angular Momentum Conservation:
[tex]I_{o}\cdot \dot n_{o} = I_{f}\cdot \dot n_{f}[/tex]
[tex]\dot n_{f} = \frac{I_{o}}{I_{f}}\cdot \dot n_{o}[/tex]
[tex]\dot n_{f} = \left(\frac{4.546\,kg\cdot m^{2}}{3.736\,kg\cdot m^{2}}\right)\cdot (70\,rpm)[/tex]
[tex]\dot n_{f} = 85.177\,rpm[/tex]