Answer:
(a). Index of refraction are [tex]n_{red}[/tex] = 1.344 & [tex]n_{violet}[/tex] = 1.406
(b). The velocity of red light in the glass [tex]v_{red} =[/tex] 2.23 ×[tex]10^{8} \ \frac{m}{s}[/tex]
The velocity of violet light in the glass [tex]v_{violet} =[/tex]2.13 ×[tex]10^{8} \ \frac{m}{s}[/tex]
Explanation:
We know that
Law of reflection is
[tex]n_1 \sin\theta_{1} = n_2 \sin\theta_{2}[/tex]
Here
[tex]\theta_1[/tex] = angle of incidence
[tex]\theta_2[/tex] = angle of refraction
(a). For red light
1 × [tex]\sin 56.6[/tex] = [tex]n_{red}[/tex] × [tex]\sin 38.4[/tex]
[tex]n_{red}[/tex] = 1.344
For violet light
1 × [tex]\sin 56.6[/tex] = [tex]n_{violet}[/tex] × [tex]\sin 36.4[/tex]
[tex]n_{violet}[/tex] = 1.406
(b). Index of refraction is given by
[tex]n = \frac{c}{v}[/tex]
[tex]n_{red}[/tex] = 1.344
[tex]v_{red} = \frac{c}{n_{red} }[/tex]
[tex]v_{red} = \frac{3(10^{8} )}{1.344}[/tex]
[tex]v_{red} =[/tex] 2.23 ×[tex]10^{8} \ \frac{m}{s}[/tex]
This is the velocity of red light in the glass.
The velocity of violet light in the glass is given by
[tex]v_{violet} = \frac{3(10^{8} )}{1.406}[/tex]
[tex]v_{violet} =[/tex]2.13 ×[tex]10^{8} \ \frac{m}{s}[/tex]
This is the velocity of violet light in the glass.