A beam of light strikes a sheet of glass at an angle of 56.6° with the normal in air. You observe that red light makes an angle of 38.4° with the normal in the glass, while violet light makes a 36.4° degree angle.
1.What are the indexes of refraction of this glass for these colors of light?

2.What are the speeds of red and violet light in the glass?

Respuesta :

Answer:

(a). Index of refraction are [tex]n_{red}[/tex] = 1.344 & [tex]n_{violet}[/tex] = 1.406

(b). The velocity of red light in the glass [tex]v_{red} =[/tex] 2.23 ×[tex]10^{8} \ \frac{m}{s}[/tex]

The velocity of violet light in the glass [tex]v_{violet} =[/tex]2.13 ×[tex]10^{8} \ \frac{m}{s}[/tex]

Explanation:

We know that

Law of reflection is

[tex]n_1 \sin\theta_{1} = n_2 \sin\theta_{2}[/tex]

Here

[tex]\theta_1[/tex] = angle of incidence

[tex]\theta_2[/tex] = angle of refraction

(a). For red light

1 × [tex]\sin 56.6[/tex] = [tex]n_{red}[/tex] × [tex]\sin 38.4[/tex]

[tex]n_{red}[/tex] = 1.344

For violet light

1 × [tex]\sin 56.6[/tex] = [tex]n_{violet}[/tex] × [tex]\sin 36.4[/tex]

[tex]n_{violet}[/tex] = 1.406

(b). Index of refraction is given by

[tex]n = \frac{c}{v}[/tex]

[tex]n_{red}[/tex] = 1.344

[tex]v_{red} = \frac{c}{n_{red} }[/tex]

[tex]v_{red} = \frac{3(10^{8} )}{1.344}[/tex]

[tex]v_{red} =[/tex] 2.23 ×[tex]10^{8} \ \frac{m}{s}[/tex]

This is the velocity of red light in the glass.

The velocity of violet light in the glass is given by

[tex]v_{violet} = \frac{3(10^{8} )}{1.406}[/tex]

[tex]v_{violet} =[/tex]2.13 ×[tex]10^{8} \ \frac{m}{s}[/tex]

This is the velocity of violet light in the glass.