A man deposits ​$16 comma 000 at the beginning of each year for 16 years in an account paying 5​% compounded annually. He then puts the total amount on deposit in another account paying 8​% compounded semiannually for another 8 years. Find the final amount on deposit after the entire 24​-year period.

Respuesta :

Answer:

[tex]\$65415[/tex]

Step-by-step explanation:

GIVEN: A man deposits [tex]\$16000[/tex] at the beginning of each year for [tex]16[/tex] years in an account paying [tex]5\%[/tex] compounded annually. He then puts the total amount on deposit in another account paying [tex]8\%[/tex] compounded semiannually for another [tex]8[/tex] years.

TO FIND: Find the final amount on deposit after the entire [tex]24[/tex]​-year period.

SOLUTION:

Total amount deposited by man [tex]=\$16,000[/tex]

rate of interest for first 16 years [tex]=16\%[/tex]

compounding interval [tex]=1\text{year}[/tex]

Total amount after [tex]16[/tex]  years [tex]=Principal(1+\frac{r}{n})^t[/tex]

                                              [tex]=16000(1+\frac{5}{100\times1})^{16}[/tex]

                                              [tex]=\$34,926[/tex]

this will become new principal after [tex]16[/tex] years.

rate of interest for last [tex]8[/tex] years [tex]=8\%[/tex]

compounding interval [tex]=2\text{ times}[/tex]

Total amount after [tex]24[/tex] years [tex]=34926(1+\frac{8}{100\times2})^{8}[/tex]

                                              [tex]=\$65415[/tex]

final amount on deposit after the entire [tex]24[/tex]-year period  is [tex]\$65415[/tex]