Answer:
The magnitude of each force is 1309 N and 105 N
Explanation:
The reaction at each lifter due weight and overturning effect (R₁, R₂) is given as:
[tex]R_1=\frac{150}{2} cos(45^0) +\frac{1.5}{2+1.5} *150sin(45^0)=53.03 +45.46=98.49kg\\R_2=\frac{150}{2} cos(45^0) -\frac{1.5}{2+1.5} *150sin(45^0)=53.03-45.46=7.57kg[/tex]
g = 9.8 m/s²
[tex]R_1=98.49*g=98.49*9.8=925.904N\\R_2=7.57*g=7.57*9.8=74.186N[/tex]
Resolving the reactions to the vertical direction, we get:
[tex]R_{1v}=\frac{R_1}{cos(45^0)} =\frac{925.904}{cos(45^0)}=1309N\\ R_{2v}=\frac{R_2}{cos(45^0)} =\frac{74.186}{cos(45^0)}=105N\\[/tex]
The magnitude of each force is 1309 N and 105 N