Find the probability of selecting none of the correct six integers in a lottery, where the order in which these integers are selected does not matter, from the positive integers not exceeding a) 40 b) 48 c) 56 d) 64.

Respuesta :

Answer:

Step-by-step explanation:

Given

there are six integers to win a lottery

case-1 Integer not exceeding 40

no of ways to choose 6 incorrect numbers

[tex]=\dfrac{^{34}C_{6}}{^{40}C_{6}}[/tex]

[tex]=0.35[/tex]

Case-2 no of ways to choose 6 incorrect numbers out of 48 integers

[tex]=\dfrac{^{42}C_{6}}{^{48}C_{6}}[/tex]

[tex]=0.427[/tex]

Case-3 no of ways to choose 6 incorrect numbers out of 56 integers

[tex]\dfrac{^{50}C_{6}}{^{56}C_{6}}[/tex]

[tex]=0.489[/tex]

Cae-4 no of ways to choose 6 incorrect numbers out of 64 integers

[tex]\dfrac{^{58}C_{6}}{^{64}C_{6}}[/tex]

[tex]=0.54[/tex]