Answer:
The correct option is option (D).
f(x,y)=2x²+xy+y²
Step-by-step explanation:
Given that,
[tex]2x^3+3x^2+2xy^2+y^3=(x+y)f(x,y)[/tex]
[tex]\Rightarrow f(x,y)=\frac{2x^3+3x^2+2xy^2+y^3}{(x+y)}[/tex]
x+y) 2x³ + 3x²y + 2xy² + y³ ( 2x²+xy+y²
2x³ +2x²y
- -
________________________
x²y + 2xy² + y³
x²y + xy²
- -
_________________________
xy² + y³
xy² + y³
- -
________________________
×
Therefore f(x,y)=2x²+xy+y²