Answer : The final temperature would be, 791.1 K
Explanation :
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at [tex]460^oC[/tex] = [tex]5.8\times 10^{-6}s^{-1}[/tex]
[tex]K_2[/tex] = rate constant at [tex]T_2[/tex] = [tex]4\times K_1[/tex]
[tex]Ea[/tex] = activation energy for the reaction = 265 kJ/mol = 265000 J/mol
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = [tex]460^oC=273+460=733K[/tex]
[tex]T_2[/tex] = final temperature = ?
Now put all the given values in this formula, we get:
[tex]\log (\frac{4\times K_1}{K_1})=\frac{265000J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{733K}-\frac{1}{T_2}][/tex]
[tex]T_2=791.1K[/tex]
Therefore, the final temperature would be, 791.1 K