On a Saturday afternoon, you decide to pay a neighborhood kid to mow your lawn. The kid usesa manual push lawn mower with a mass of m=12 kg. The handle of the lawnmower is tiltedθ=53 degrees with respect to the vertical and the coefficient of kinetic friction between thelawnmower and the ground is μ​k​=0.16. Assume that the kid is pushing parallel to the handle.A.Find an expression for much power the kid supplies to the lawnmower (P​kid​) if thelawnmower is moving at a constant speed of v​o​=1.5 m/s.B.Find the numerical value for P​kid

Respuesta :

Answer with Explanation:

We are given that

A.Mass,m=12 kg

[tex]\theta=53^{\circ}[/tex]

[tex]\mu_k=0.16[/tex]

Speed,v=1.5m/s

Net force in x direction must be zero

[tex]F_{net}=0[/tex]

[tex]Fsin\theta-f=0[/tex]

[tex]Fsin\theta=f[/tex]

Net force in y direction

[tex]N-mg-Fcos\theta=0[/tex]

[tex]N=mg+Fcos\theta[/tex]

[tex]f=\mu_kN=\mu_k(mg+Fcos\theta)[/tex]

[tex]Fsin\theta=\mu_k(mg+Fcos\theta)[/tex]

[tex]Fsin\theta=\mu_kmg+\mu_kFcos\theta[/tex]

[tex]Fsin\theta-\mu_kFcos\theta=\mu_kmg[/tex]

[tex]F(sin\theta-\mu_kcos\theta)=\mu_kmg[/tex]

[tex]F=\frac{\mu_kmg}{sin\theta-\mu_kcos\theta}[/tex]

Power,P=Fv

[tex]P=\frac{\mu_kmg}{sin\theta-\mu_kcos\theta}v[/tex]

Where [tex]g=9.8m/s^2[/tex]

B.Substitute the values

[tex]P=\frac{0.16\times 12\times 9.8}{sin53-0.16cos53}\times 1.5[/tex]

[tex]P=40.17W[/tex]

The Power the kid supplies to the lawnmower will be "40.17 W". To understand the calculation, check below.

Power, Force and Mass

According to the question,

Mass, m = 12 kg

Angle, θ = 53°

Speed, v = 1.5 m/s

[tex]\mu_k[/tex] = 0.16

When the net force is in x-direction,

Net force, [tex]F_{net}[/tex] = 0

              [tex]F_{Sin \Theta}[/tex] - f = 0

                  [tex]F_{Sin \Theta}[/tex] = f

When the net force is in y-direction,

→ N - mg - F Cosθ = 0

or,

  f = [tex]\mu_k[/tex]N = [tex]\mu_k[/tex] (mg + F Cosθ)

  F Sin θ = [tex]\mu_k[/tex] (mg + F Cosθ)

            F = [tex]\frac{\mu_k mg}{Sin \theta - \mu_k Cos \theta}[/tex]

We know, Power, P = Fv

then, P = [tex]\frac{\mu_k mg}{Sin \theta - \mu_k Cos \theta}[/tex] v

By substituting the values,

            = [tex]\frac{0.16\times 12\times 9.8}{Sin 53^{\circ} - 0.16 Cos 53^{\circ}}[/tex] × 1.5

            = 40.17 W

Thus the approach above is correct.

Find out more information about Power here:

https://brainly.com/question/1634438