Answer:
a) 347.2 GPa
b) 233.02 GPa
Explanation:
a) To find the upper bound modulus of elasticity, we use the formula:
[tex] E_c(u) = E_mV_m + E_pV_p[/tex]
Where,
Volume fraction= V
E = modulus
Em=52GPa
Ep=380GPa
Vp=90%=0.90
Vm= 100%-90%=10%=0.10
We now have:
[tex] E_c(u) = (52*0.1)+(380*0.90)[/tex]
= 5.2+342
= 347.2 GPa
b) For the lower bound modulus of elasticity, we use:
[tex] E_c(l) = \frac{E_mE_p}{E_pV_m+E_m+V_p}[/tex]
[tex]=\frac{52*380}{(52*0.90)+(380*0.10)}[/tex]
=233.02 GPa