An LED with total power P tot = 960 mW emits UV light of wavelength 360 nm. Assuming the LED is 55% efficient and acts as an isotropic point source (i.e., emits light uniformly in all directions), what is the amplitude of the electric field, E 0 , at a distance of 2.5 cm from the LED?

Respuesta :

Answer:

[tex]E_0=225.09N/C[/tex]

Explanation:

We are given that

Power,Ptot=960mW=[tex]960\times 10^{-3}W[/tex]

[tex]1mW=10^{-3} W[/tex]

Wavelength,[tex]\lambda=360 nm=360\times 10^{-9} m[/tex]

[tex] 1nm=10^{-9} m[/tex]

Distance,r=2.5 cm=[tex]2.5\times 10^{-2} m[/tex]

1m=100 cm

Efficiency=55%

Power radiation emitted=[tex]\frac{55}{100}\times 960\times 10^{-3}=0.528W[/tex]

Intensity,I=[tex]\frac{P}{4\pi r^2}[/tex]

[tex]I=\frac{0.528}{4\pi(2.5\times 10^{-2})^2}=67.26W/m^2[/tex]

Intensity,[tex]I=\frac{1}{2}c\epsilon_0E^2_0[/tex]

[tex]E^2_0=\frac{2I}{c\epsilon_0}[/tex]

Where [tex]\epsilon_0=8.85\times 10^{-12}[/tex]

[tex]c=3\times 10^8 m/s[/tex]

[tex]E_0=\sqrt{\frac{2I}{c\epsilon_0}}[/tex]

[tex]E_0=\sqrt{\frac{2\times 67.26}{3\times 10^8\times 8.85\times 10^{-12}}}[/tex]

[tex]E_0=225.09N/C[/tex]