Answer:
[tex]v_{1}[/tex] = 5 km/hr
[tex]v_{2}[/tex]= 4.5 km/r
Step-by-step explanation:
Distance of two tourists can be represented by [tex]d_{1}[/tex] and [tex]d_{2}[/tex]
Therefore, the total distance would be
[tex]d_{1}[/tex] + [tex]d_{2}[/tex] =38 ----> (eq1)
->if the first one covered 2 km more than the second
[tex]d_{1}[/tex] = [tex]d_{2}[/tex] +2 (substituting this in above equation)
We will have,
( [tex]d_{2}[/tex] +2)+ [tex]d_{2}[/tex] =38
2[tex]d_{2}[/tex]+2=38
2[tex]d_{2}[/tex]=36
[tex]d_{2}[/tex] = 36/2
[tex]d_{2}[/tex]=18
plugging value of [tex]d_{2}[/tex] in eq(1)
eq(1)=>
[tex]d_{1}[/tex] + [tex]d_{2}[/tex] = 38
[tex]d_{1}[/tex] + 18 =38
[tex]d_{1}[/tex] = 20 km
the distance of each of the tourists
[tex]d_{1}[/tex] =20km and [tex]d_{2}[/tex] =18km
As they both traveled for 4 hrs
t=4hr
speed can be defined as distance per unit time i.e
speed 'v' = distance 'd' / time 't'
Let [tex]v_{1}[/tex] and [tex]v_{2}[/tex] represent speed of each of the tourists
Therefore,
[tex]v_{1}[/tex] =[tex]d_{1}[/tex] /t => 20/4
[tex]v_{1}[/tex] = 5 km/hr
[tex]v_{2}[/tex]= [tex]d_{2}[/tex] /t => 18/4
[tex]v_{2}[/tex]= 4.5 km/r