Respuesta :
Answer:
the final velocity of the two blocks is [tex]v = \frac{mv_o}{m+M}[/tex]
the distance that A slides relative to B is [tex]S = \frac{v_o^2M}{2 \mu g (M+m)}[/tex]
Explanation:
From the diagram below;
acceleration of A relative to B is : [tex]a = - ( \mu g + \frac{ \mu mg}{M})[/tex]
where
v = u + at
[tex]0 = v_o + ( - \mu g - \frac{\mu m g }{M})t[/tex]
Making t the subject of the formula; we have:
[tex]t = \frac{v_o M}{(\mu g )(M+m)}[/tex]
[tex]v^2 = u^2 +2 as\\\\0^2 = v_o^2 - 2 (\mu g ) (\frac{M+m}{M})S\\\\[/tex]
[tex]S = \frac{v_o^2M}{2 \mu g (M+m)}[/tex] which implies the distance that A slides relative to B.
The final velocities of the two blocks can be determined as follows:
v = u + at
[tex]v = v_o - \mu g \frac{v_oM}{\mu g (M+m)}\\\\v = \frac{\mu g mv_o}{m+M}\\\\[/tex]
[tex]v = \frac{mv_o}{m+M}[/tex]
Thus, the final velocity of the two blocks is [tex]v = \frac{mv_o}{m+M}[/tex]

The final velocities of the two blocks A and B are :
[tex]$v=\frac{mv_0}{m+M}$[/tex]
And, the distance that the block A slides relative to the block B is :
[tex]$S=\frac{v_0^2 M}{2 \mu g(m+M)}$[/tex]
Finding the distance travelled
Given :
Initial velocity of block A = [tex]$v_0$[/tex]
Initial velocity of block B = [tex]0[/tex]
Now from the diagram, the acceleration can be found out as :
Acceleration of block A relative to block B :
[tex]$a=- \left( \mu g + \frac{\mu mg}{M} \right)$[/tex]
Now we know, final velocity :
[tex]$v=u+at$[/tex]
[tex]$0=v_0 - \left(\mu g + \frac{\mu mg}{M} \right) \times t$[/tex]
[tex]$t=\frac{v_0 M}{(\mu g)(m+M)}$[/tex]
Now,
[tex]$v^2=u^2+2aS$[/tex]
[tex]$0=v_0^2+2(\mu g) \left(\frac{m+M}{M} \right) S$[/tex]
Therefore,
[tex]$S=\frac{v_0^2 M}{2 \mu g (m+M)}$[/tex]
This is the distance through which block A slides relative to block B.
Final velocities of the two blocks
We know,
[tex]$v=u+at$[/tex]
[tex]$v=v_0-(\mu g)\left( \frac{v_0 M}{(\mu g)(m+M)} \right)$[/tex]
[tex]$v=\frac{m v_0}{m+M}$[/tex]
This is the final velocity of the two blocks.
Learn more about "relative velocities" here :
https://brainly.com/question/24337516
