Answer:
The speed of sound in this metal is 3726 m/s
Explanation:
Length Δx = 3.4 m, Δt = time of pulses separation = 9.0 ms = 9 × 10⁻³ s = 0.009 s
Velocity of air ([tex]V_{air}[/tex]) = 343 m/s
The time interval of the sound pulse in air (Δ[tex]t_{air}[/tex]) is given as:
Δ[tex]t_{air}[/tex] = Δx / [tex]V_{air}[/tex] = 3.4 / 343 = 0.0099125 s
Δ[tex]t_{air}[/tex] = 0.0099 s
The time of pulse travelling through metal (Δ[tex]t_{metal}[/tex]) = Δt - Δ[tex]t_{air}[/tex]
Δ[tex]t_{metal}[/tex] = Δt - Δ[tex]t_{air}[/tex] = 0.0099125 - 0.009 = 0.0009125 s
Since the length of the metal is 3.4 m, the speed of sound in metal ([tex]V_{air}[/tex]) is given as:
[tex]V_{air}[/tex] = Δx / Δ[tex]t_{metal}[/tex] = 3.4 / 0.0009125 = 3726 m/s
The speed of sound in this metal is 3726 m/s