The mass of block A is 4 kg, the mass of block B is 3 kg, and the angle of the ramp is θ = 30°. The rope moves over the pulley without slipping. The coefficient of kinetic friction between the block A and the ramp is 0.15. The pulley can be modeled as a uniformly dense cylinder with a mass of 4 kg and a radius of 10 cm. What is the magnitude of the tension (in N) in the rope between block B and the pulley?

Respuesta :

Answer:

[tex]T_{B}=26.16 N[/tex]

Explanation:

We need to use the Newton's second law.

Block A

[tex]\Sigma F=m_{A}a[/tex]

[tex]T_{A}-m_{A}gsin(30)-\mu m_{A}gcos(30)=m_{A}a[/tex] (1)

Block B

[tex]\Sigma F=m_{B}a[/tex]

[tex]m_{B}g-T_{B}=m_{B}a[/tex] (2)    

Pulley

Here we need to use Newton's law related to the torque.

[tex]T_{B}R-T_{A}R=I\alpha[/tex] (3)

I is the momentum of inertia of a cylinder (I=(1/2)mr²)

α is the angular acceleration (a/R)

Let's combine 1 and 2 to find T(B)-T(A)

[tex]T_{B}-T_{A}=m_{B}g-m_{A}g(sin(30)+\mu cos(30))-a(m_{A}+m_{B})[/tex] (4)

From 3 we have:

[tex]T_{B}R-T_{A}R=(1/2)m_{p}R^{2}*(a/R)[/tex]

[tex]T_{B}-T_{A}=(1/2)m_{p}*a[/tex] (5)

We can equal (4) and (5)

[tex](1/2)m_{p}*a=m_{B}g-m_{A}g(sin(30)+\mu cos(30))-a(m_{A}+m_{B})[/tex]

[tex](1/2)m_{p}*a+a(m_{A}+m_{B})=m_{B}g-m_{A}g(sin(30)+\mu cos(30))[/tex]

[tex]a((1/2)m_{p}+(m_{A}+m_{B}))=m_{B}g-m_{A}g(sin(30)+\mu cos(30))[/tex]

[tex]a=\frac{m_{B}g-m_{A}g(sin(30)+\mu cos(30))}{(1/2)m_{p}+(m_{A}+m_{B})}[/tex]

[tex]a=\frac{3*9.81-4*9.81*(sin(30)+0.15cos(30))}{(1/2)*4+(4+3)}[/tex]  

[tex]a=0.52 m/s^{2}[/tex]

Therefore, using (2) we can find the tension in the rope between block B:

[tex]T_{B}=m_{B}g-m_{B}a[/tex]

[tex]T_{B}=m_{B}(g-a)[/tex]

[tex]T_{B}=27.87 N[/tex]

I hope it helps you!