The heights of 40 randomly chosen men are measured and found to follow a normal distribution. An average height of 175 cm is obtained. The standard deviation of men's heights is 20 cm. Calculate a 95% two-sided confidence interval for the heights, and interpret (in a sentence) what it means.

Respuesta :

Answer:

95% two-sided confidence interval for the true mean heights of men is [168.8 cm , 181.2 cm].

Step-by-step explanation:

We are given that the heights of 40 randomly chosen men are measured and found to follow a normal distribution.

An average height of 175 cm is obtained. The standard deviation of men's heights is 20 cm.

Firstly, the pivotal quantity for 95% confidence interval for the true mean is given by;

                             P.Q. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\bar X[/tex] = sample average height = 175 cm

            [tex]\sigma[/tex] = population standard deviation = 20 cm

            n = sample of men = 40

Here for constructing 95% confidence interval we have used One-sample z test statistics as we know about population standard deviation.

So, 95% confidence interval for the true mean, [tex]\mu[/tex] is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5%

                                     level of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times }{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.96 \times }{\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-1.96 \times }{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times }{\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times }{\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times }{\frac{\sigma}{\sqrt{n} } }[/tex] ]

                                            = [ [tex]175-1.96 \times }{\frac{20}{\sqrt{40} } }[/tex] , [tex]175+1.96 \times }{\frac{20}{\sqrt{40} } }[/tex] ]

                                            = [168.8 cm , 181.2 cm]

Therefore, 95% confidence interval for the true mean height of men is [168.8 cm , 181.2 cm].

The interpretation of the above interval is that we are 95% confident that the true mean height of men will be between 168.8 cm and 181.2 cm.