A spring oscillator is designed with a mass of 0.223 kg. It operates while immersed in a damping fluid, selected so that the oscillation amplitude decreases to 1.00 % of its initial value in 9.07 s. Determine the damping coefficient b of the system.

Respuesta :

Answer:

The damping coefficient of the system is 0.226.

Explanation:

Given:

Mass [tex]m = 0.223[/tex] kg

Time [tex]t = 9.07[/tex] sec

From the formula of amplitude,

    [tex]A = A_{o} e^{-\alpha t }[/tex]

Where [tex]\alpha = \frac{b}{2m}[/tex]

Here amplitude decrease to 1%

So we write,

   [tex]0.01 = e^{-\alpha 9.07 }[/tex]

[tex]\ln 0.01 = - \alpha 9.07[/tex]

[tex]-4.605 = - \alpha 9.07[/tex]

   [tex]\alpha = 0.507[/tex]

Here [tex]\alpha = \frac{b}{2m}[/tex]

Where [tex]b =[/tex] damping coefficient

  [tex]b = \alpha 2m[/tex]

  [tex]b = 2 \times 0.507 \times 0.223[/tex]

  [tex]b = 0.226[/tex]

Therefore, the damping coefficient of the system is 0.226.

Lanuel

The damping coefficient (b) of the system is equal to 0.2264.

Given the following data:

  • Mass = 0.223 kg.
  • Time = 9.07 seconds.
  • Amplitude = 0.01

To determine the damping coefficient (b) of the system:

Mathematically, the amplitude for an underdamped harmonic motion is given by the formula:

[tex]A=A_oe^{-\alpha t}[/tex]

Substituting the given parameters into the formula, we have;

[tex]0.01 = e^{-9.07\alpha }\\\\ln0.01 = -9.07\alpha\\\\-4.6052 = -9.07\alpha\\\\\alpha =\frac{-4.6052}{-9.07} \\\\\alpha = 0.5077[/tex]

Now, we can find the determine the damping coefficient (b) of the system by applying this formula:

[tex]\alpha = \frac{b}{2m}[/tex]

Making b the subject of formula, we have:

[tex]b = \alpha 2m\\\\b= 0.5077 \times 2 \times 0.223[/tex]

Damping coefficient (b) = 0.2264

Read more: https://brainly.com/question/14708169