Answer:
[tex]h(t)=-25cos(\frac{\pi}{3}t)+29[/tex]
Step-by-step explanation:
We are given that
Diameter,d=50 m
Distance of platform from the ground=4 m
Amplitude,A =[tex]\frac{diameter}{2}=\frac{50}{2}=25 m[/tex]
Midline,C=Amplitude+Distance from the ground=25+4=29 m
Period,T=6 minutes
We know that period of cosine
[tex]\frac{2\pi}{b}=T=6[/tex]
[tex]b=\frac{2\pi}{6}=\frac{\pi}{3}[/tex]
[tex]h(t)=-Acos(bt)+C[/tex]
Substitute the values
[tex]h(t)=-25cos(\frac{\pi}{3}t)+29[/tex]