Respuesta :
Answer:
9.5 days
Step-by-step explanation:
-This problem can be modeled using an exponential function of the form:
[tex]A=A_oe^{rt}\\\\A=Population \ at \ time\ t\\A_o=Initial \ Population\\r-Growth \ rate\\t=time[/tex]
#We equate to solve for r:
[tex]A=A_oe^{rt}, A=2A_o\\\\\therefore 2=e^{6r}\\\\\\r=\frac{In \ 2}{6}\\\\=0.1155[/tex]
#we then use this calculate this growth rate to calculate t when A=[tex]3A_o[/tex]:
[tex]A=A_oe^{rt}, A=3A_o\\\\3=e^{0.1155t}\\\\t=\frac{In \ 3}{0.1155}\\\\=9.5118\approx 9.5 \ days[/tex]
Hence, it takes approximately 9.5 days for the population to triple.
Answer:
The time it takes the virus population to triple is at least 9.5 days.
Step-by-step explanation: