Answer:
(a) [tex]\frac{1}{16}[/tex]
(b)[tex]\frac{1}{8}[/tex]
(c)[tex]\frac{3}{16}[/tex]
(d)[tex]\frac{15}{16}[/tex]
Step-by-step explanation:
The letters in each tile are:
A, B, C, F, G, I, K, L, O, P, Q, T, V, W, X, Z
Total Number of tiles n(S)=16
(a)The probability of drawing any one of the letters
The Probability of drawing any one of the letters [tex]=\dfrac{1}{n(S)}=\dfrac{1}{16}[/tex]
(b)The probability of drawing either an "F" or "P" tile
P(Either an F or a P Tile) = P(drawing an F Tile )+P(drawing a P Tile)
[tex]=\dfrac{1}{16}+\dfrac{1}{16}\\=\dfrac{2}{16}\\=\dfrac{1}{8}[/tex]
(c)The probability of drawing a vowel
The Vowel Tiles are: A,I,O
Number of Vowels =3
[tex]\text{P(Drawing a vowel)}=\dfrac{3}{16}[/tex]
(d)The probability of not drawing a "Q" tile
[tex]\text{P(Drawing a Q tile)}=\dfrac{1}{16}\\Therefore:\\\text{P(Not Drawing a Q tile)}=P(Q^c)=1-\dfrac{1}{16}\\=\dfrac{15}{16}[/tex]