Answer:
(a) 4.25 [tex]m/s^2[/tex]
(b) 4420 N
(c) 4.25 [tex]m/s^2[/tex]
(d) 6842.5 N
Explanation:
(a) Centripetal acceleration of car A, [tex]a_c[/tex], is given as;
[tex]a_c = \frac{v^2}{r}[/tex]
where v = velocity of car
r = radius of curve
[tex]a_c = \frac{22^2}{114}\\ \\\\a_c = 4.25 m/s^2[/tex]
(b) Centripetal force of car A is given as:
[tex]F_A = m_A*a_c = m_A*\frac{v^2}{r}[/tex]
[tex]F_A = 1040 * 4.25 = \\\\\\F_A = 4420 N[/tex]
(c) Since car A and car B have the same speed, they have the same centripetal acceleration ([tex]a_c = 4.25 m/s^2[/tex])
(d) Centripetal force of car A is given as:
[tex]F_B = m_B*a_c = m_B*\frac{v^2}{r}[/tex]
[tex]F_A = 1610 * 4.25 = \\\\\\F_A = 6842.5N[/tex]