Answer:
0.325 m/s
Explanation:
We are given that
Moment of inertia,[tex]I_1=\frac{1}{2}MR^2[/tex]
M=250 kg
R=2 m
[tex]I_1=\frac{1}{2}(250)(2^2)=500 kgm^2[/tex]
Angular speed,[tex]\omega_1=0.4rad/s[/tex]
m=40 kg
Distance,r=1.7 m
We have to find the angular velocity of the merry go wound with added mass.
[tex]I_2=I_1+40r^2=500+40(1.7)^2=615.6kgm^2[/tex]
Using conservation of momentum
[tex]I_1\omega_1=I_2\omega_2[/tex]
[tex]500\times 0.4=615.6\omega_2[/tex]
[tex]\omega_2=\frac{500\times 0.4}{615.6}=0.325 rad/s[/tex]