contestada

A 3.13 kg particle has a velocity v3.13 kg = a ˆi + b ˆj, where a = 24.2 m/s and b = 1.35 m/s, and a 2.81 kg particle has a velocity v2.81 kg = c ˆi + d ˆj, where c = 1.27 m/s and d = 8.54 m/s. Find the speed of the center of mass. Answer in units of m/s.

Respuesta :

Answer:

The speed of the center of mass  is [tex](20.08\hat i+4.74 \hat j)m/s[/tex]

Explanation:

The speed of center of mass:

When a system of particles is moving, then the center of mass moves along with the system.

The center of mass velocity is ratio of the sum of momentum ( mass times velocity) to total mass of the system.

[tex]v_{cm}=\frac{v_1m_1+v_2m_2+......+v_nm_n}{m_1+m_2+......+m_n}[/tex]

Given that,

A 3.13 kg particle has a velocity [tex]a\hat i +b\hat j[/tex], where a= 24.2 m/s and b=1.35 m/s

and other particle has a velocity [tex]c\hat i+ d\hat j[/tex], where c= 1.27 m/s and d=8.54 m/s

Here, [tex]v_1 = 24.2 \hat i +1.35 \hat j[/tex]  , [tex]m_1[/tex] = 3.13 kg

[tex]v_2 = 1.27 \hat i +8.54\hat j[/tex] , [tex]m_2[/tex] = 2.81 kg

The speed of the center of mass  is

[tex]v_{cm}=\frac{v_1m_1+v_2m_2}{m_1+m_2}[/tex]

       [tex]=\frac{(24.2 \hat i +1.35 \hat j) .3.13+( 1.27 \hat i +8.54\hat j). 2.81}{3.13+2.82}[/tex]

      [tex]=\frac{(75.746\hat i +4.2255\hat j) +( 3.5687\hat i +23.9974\hat j)}{5.95}[/tex]

      [tex]=20.08\hat i+4.74 \hat j[/tex] m/s