Answer:
The length of the pipe A is [tex]L_A[/tex] = 0.4763 m & the length of the pipe B is [tex]L_B =[/tex] 0.357 m
Explanation:
Fundamental frequency = 360 Hz
Velocity = 343 [tex]\frac{m}{s}[/tex]
(a). Length of the pipe is given by
[tex]L = \frac{V}{2 f}[/tex]
Put all the values in above equation we get
[tex]L = \frac{343}{2 (360)}[/tex]
[tex]L_A[/tex] = 0.4763 m
(b). Given that
The third harmonic of organ pipe B = the second harmonic of pipe A
[tex]\frac{n_B}{4L_B} = \frac{n_A}{2L_A}[/tex]
Thus
[tex]L_B = \frac{2 n_{B} L_A }{4n_A}[/tex]
Put all the values in above formula we get
[tex]L_B = \frac{2 (3)(0.4763) }{4(2)}[/tex]
[tex]L_B =[/tex] 0.357 m
Therefore the length of the pipe A is [tex]L_A[/tex] = 0.4763 m & the length of the pipe B is [tex]L_B =[/tex] 0.357 m