A rectangular piece of land is to be fenced using two kinds of fencing. Two opposite sides will be fenced using standard fencing that costs $6 m, while the other two sides will require heavy-duty fencing that costs $9 m. What are the dimensions of the rectangular lot of greatest area that can be fenced for a cost of $9000?

Respuesta :

Answer:

Therefore the dimension of the rectangular piece of land is 375 m by 250 m.

Step-by-step explanation:

Given that,

Two opposite sides of rectangular land will be fenced using standard fencing that costs $6 per m while the other two side will require heavy duty fencing that costs $9 per m.

Let the length and width of the rectangular x and y respectively.

Then total cost for fencing = [tex]\$(2x\times 6+2y\times 9)[/tex]

                                            =$(12x+18y)

Then,

12x+18y= 9,000

⇒ 2x+3y=1,500     [ cancel out common factor 6]

⇒3y= 1500 - 2x

[tex]\Rightarrow y=\frac{1500-2x}{3}[/tex] ....(1)

The area of the rectangular land is = Length × width

                                                          = xy

Let,

A=xy

Putting the value of y

[tex]A=x.\frac{1500-2x}{3}[/tex]

[tex]\Rightarrow A=\frac13(1500x-2x^2)[/tex]

Differentiating with respect to x

[tex]A'=\frac13(1500-4x)[/tex]

Again differentiating with respect to x

[tex]A''=-\frac43[/tex]

Now we have to determine the critical value of A.

For critical value set A'=0

[tex]\frac13(1500-4x)=0[/tex]

⇒1500-4x=0

[tex]\Rightarrow x=\frac{1500}{4}[/tex]

[tex]\Rightarrow x=375[/tex] m

Since, [tex]A''|_{x=375}=-\frac43<0[/tex]. at x=375 m the area of the rectangular piece of land is maximum.

From equation (1) we get when x=375

[tex]y=\frac{1500-2\times 375}{3}[/tex]

⇒y=250 m

Therefore the dimension of the rectangular piece of land is 375 m by 250 m.

The dimension of the rectangular lot of greatest area is [tex]250m \ by \ 375m[/tex].

The perimeter of rectangle:

The formula for the perimeter of a rectangle is,

[tex]P=2(l+b)[/tex]

Let [tex]L[/tex] be the length & B the breadth in meters.

Perimeter[tex]=2L+2B[/tex]

[tex](6\times2L+9\times2B)=9000[/tex]

[tex]L=750-1.5B[/tex]

[tex]\Rightarrow Area \ A=LB=(750-1.5B)\\=750B-1.5B^2[/tex]

[tex]{A}'=750-3B \ and \ {A}''=-3[/tex] (i.e. negative, so setting [tex]{A}'[/tex] to zero will give a maxima)

[tex]0=750-3B \\ B=250m \\ L=750-1.5\times 250 \\ =375m[/tex]

Learn more about the Perimeter of the rectangle:

https://brainly.com/question/14920483