Respuesta :
Answer:
The maximum speed at which the car can travel around this curve without sliding is 29.69 [tex]\frac{m}{s}[/tex]
Explanation:
Given:
Coefficient of static friction [tex]\mu_{s} = 0.300[/tex]
Radius of curve [tex]r = 300[/tex] m
Here in our question car move in circular path so force is given by,
From the formula of centripetal force,
[tex]F = \frac{mv^{2} }{r}[/tex]
Where [tex]F =[/tex] Normal force
[tex]\mu_{s} N = \frac{mv^{2} }{r}[/tex]
[tex]\mu_{s} mg = \frac{mv^{2} }{r}[/tex]
Where [tex]g = 9.8 \frac{m}{s^{2} }[/tex]
[tex]\mu_{s} g = \frac{v^{2} }{r}[/tex]
[tex]v= \sqrt{\mu_{s} g r}[/tex]
[tex]v = \sqrt{0.30 \times 9.8 \times 300}[/tex]
[tex]v = 29.69 \frac{m}{s}[/tex]
Therefore, the maximum speed at which the car can travel around this curve without sliding is 29.69 [tex]\frac{m}{s}[/tex]