Answer:
28.57 cm
Explanation:
We are given that
Focal length,[tex]f=50 cm[/tex]
Distance of application from his eyes,s=40 cm
[tex]\frac{1}{s}+\frac{1}{s'}=\frac{1}{f}[/tex]
[tex]\frac{1}{40}+\frac{1}{s'}=\frac{1}{50}[/tex]
[tex]\frac{1}{s'}=\frac{1}{50}-\frac{1}{40}=\frac{4-5}{200}[/tex]
[tex]s'=\frac{200}{-1}=-200 cm[/tex]
s=25 cm
Substitute the values
[tex]\frac{1}{25}-\frac{1}{200}=\frac{1}{f'}[/tex]
[tex]\frac{8-1}{200}=\frac{1}{f'}[/tex]
[tex]\frac{1}{f'}=\frac{7}{200}[/tex]
[tex]f'=\frac{200}{7}=28.57 cm[/tex]